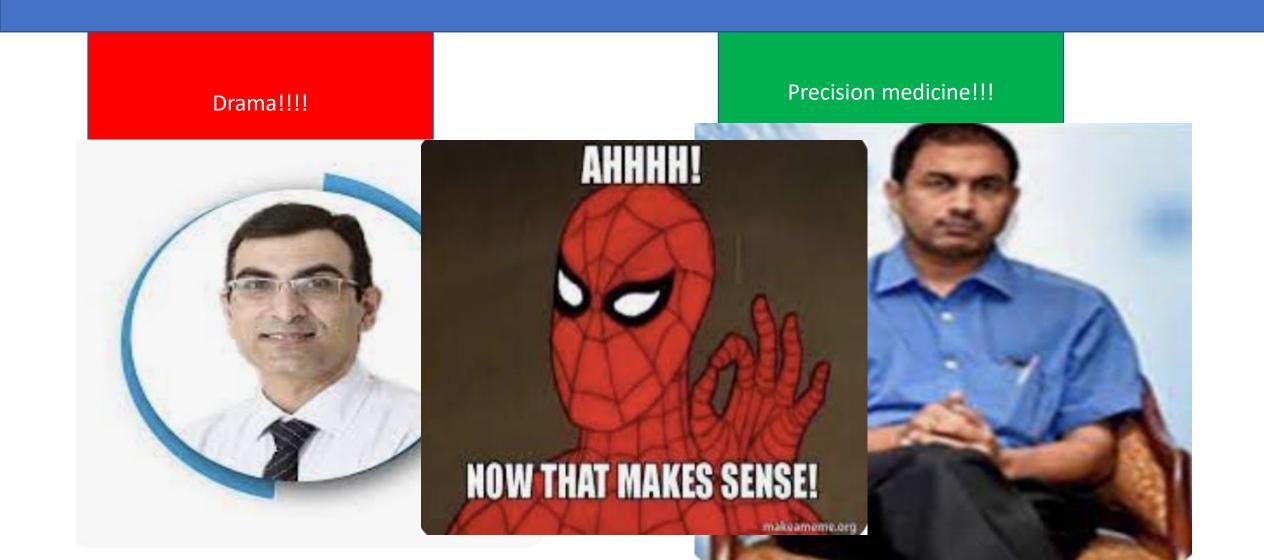
Achieving Dramatic Insights Into Molecular Oncology & Precision Medicine Of NSCLC-MTB

Dr Ullas Batra


Co Director, Dept Of Medical Oncology

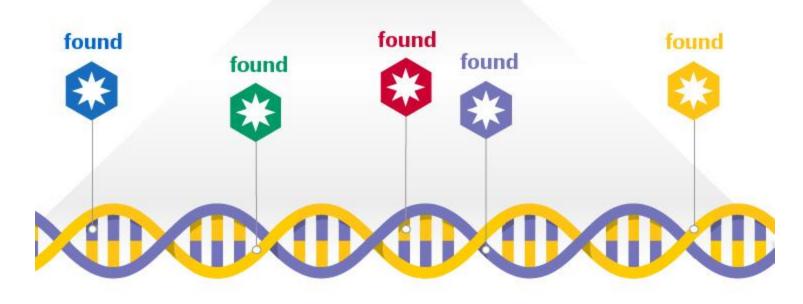
Chief, Dept of Thoracic Medical Oncology

Rajiv Gandhi Cancer Institute & Research Centre,

Delhi

My subsequent reactions....

Case scenario 1


- 55-year-old male, non smoker
- Stage 4 NSCLC, adenocarcinoma
- PET CT- Lung mass with multiple skeletal metastases
- MRI Brain- normal
- PDL1-80%
- How would you investigate further
 - Single gene testing
 - Short panel NGS
 - Slightly large panel NGS
 - Comprehensive Genomic Profiling(Patiala panel!!!)

Small panel vs Large Panels: The Basics

Comprehensive genomic profiling

Kulkarni, S., & Pfeifer, J. (Eds.). (2014). Clinical genomics. Academic Press

A Better Nomenclature: Targeted vs large panels!!!

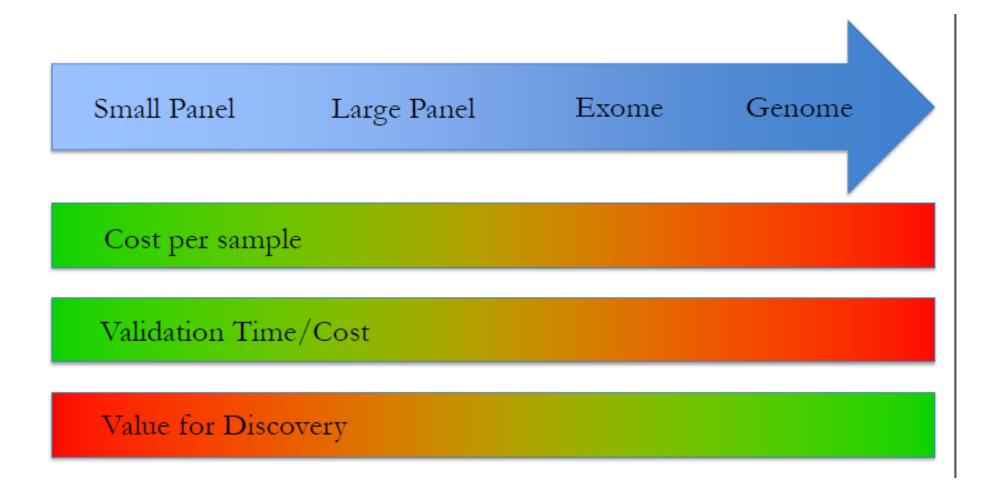
The lon A	mpliSeq Ca	ncer Hotspo	t Panel v2 tar	gets
50 genes				
ABL1	EGFR	GNAS	KRAS	PTPN11
AKT1	ERBB2	GNAQ	MET	RB1
ALK	ERBB4	HNF1A	MLH1	RET
APC	EZH2	HRAS	MPL	SMAD4
ATM	FBXW7	IDH1	NOTCH1	SMARCB1
BRAF	FGFR1	JAK2	NPM1	SMO
CDH1	FGFR2	JAK3	NRAS	SRC
Oncomino	Ecoura Acces	, aona liat		

Oncomine Focus Assay gene list

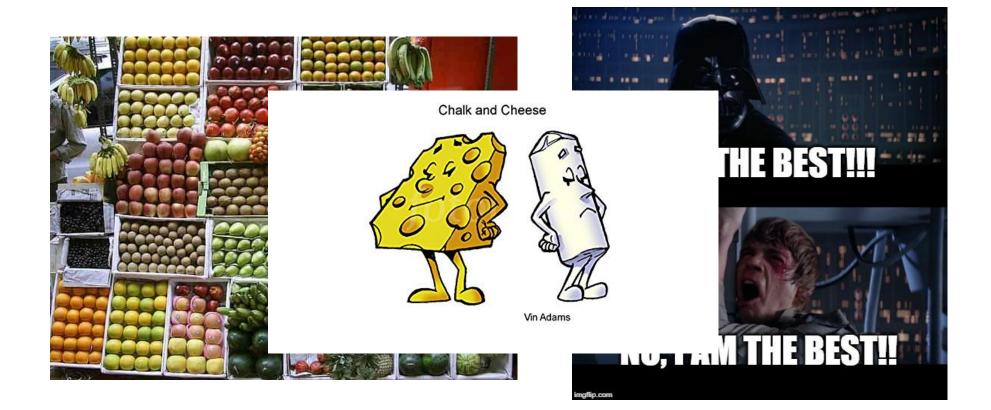
	(Detection of v	ariants in 52 k	key solid tumor gen	ies	
35 ge	enes with hotsp	oot mutations		with copy number /ariations	23 genes	with fusion drivers
		DNA panel, 269 am	plicons		RNA pa	nel, 271 amplicons
AKT1	FGFR2	MAP2K1	ALK	KIT	ABL1	FGFR2
ALK	FGFR3	MAP2K2	AR	KRAS	ALK	FGFR3
AR	GNA11	MET	BRAF	MET	AKT3	MET
BRAF	GNAQ	MTOR	CCND1	MYC	AXL	NTRK1
CDK4	HRAS	NRAS	CDK4	MYCN	BRAF	NTRK2
CTNNB1	IDH1	PDGFRA	CDK6	PDGFRA	EGFR	NTRK3
DDR2	IDH2	PIK3CA	EGFR	PIK3CA	ERBB2	PDGFRA
EGFR	JAK1	RAF1	ERBB2		ERG	PPARG
ERBB2	JAK2	RET	FGFR1		ETV1	RAF1
ERBB3	JAK3	ROS1	FGFR2		ETV4	RET
ERBB4	KIT	SMO	FGFR3		ETV5	ROS1
ESR1	KRAS		FGFR4		FGFR1	

Targeted

ABL2	CD79A	EPHB1	GRM8	LIFR	МҮН9	PMS1	SOX2	WAS	GNAS	ATRX	TSC2
ACVR2A	CD79B	EPHB4	GUCY1A2	LPHN3	NCOA1	POT1	SSX1	WHSC1	HFN1A	BAP1	WT1
ADAMTS20	CDC73	EPHB6	HCAR1	LPP	NCOA2	POU5F1	STK36	WRN	HRAS	CDK12	
AFF1	CDH1	ERCC1	HIF1A	LRP1B	NCOA4	PPARG	SUFU	XPA	IDH1	CDKN2A	+
AFF3	CDH11	ERCC3	HLF	LTF	NFKB1	PPP2R1A	SYK	XPC	IDH2	CDKN2B	-
AKAP9	CDH2	ERCC4	НООКЗ	LTK	NFKB2	PRDM1	SYNE1	XPO1	JAK2	CEBPA	-
APC	CDH20	ERCC5	HSP90AA1	MAF	NIN	PRKAR1A	TAF1	XRCC2	KOR	CHEK1	+
ARID2	CDH5	ERG	HSP90AB1	MAFB	NKX2-1	PRKDC	TAF1L	ZNF384	KIT	CHEK2	+
ARNT	CDK8	ETS1	ICK	MAGEA1	NLRP1	PSIP1	TAL1	ZNF521	KRAS	CREBBP	+
ATF1	CDKN2C	ETV1	IGF1R	MAGI1	NOTCH4	PTGS2	TBX22	ABL1	MAP2K1	DNMT3A	+
AURKA	CIC	ETV4	IGF2	MALT1	NSD1	PTPRD	TCF12	AKT1	MAP2K2	FANCA	+
AURKB	CKS1B	EXT1	IGF2R	MAML2	NUMA1	PTPRT	TCF3	AKT2	MAP2K4	FANCD2	+
AURKC	CMPK1	EXT2	IKBKB	MAP3K7	NUP214	RALGDS	TCF7L1	AKT3	MAPK1	FBXW7	+
BAI3	COL1A1	FAM123B	IKBKE	MAPSK7 MAPK8	NUP214 NUP98	RARA	TCF7L2	ALK	MET	MLH1	+
BCL10	CRBN	FANCC	IKZF1	MARK1	PAK3	RECQL4	TCL1A	AR	MPL	MSH2	+
BCL11A	CREB1	FANCE	1L2	MARK4	PARP1	REL	TET1	AXL	MTOR	MSH6	
BCL11B	CRKL	FANCG	IL21R	MBD1	PAX3	RHOH	TFE3	BRAF	MYC	NBN	
BCL2	CRTC1	FANCJ	IL6ST	MCL1	PAX5	RNASEL	TGFBR2	CBL	MYCN	NF1	
BCL2L1	CSMD3	FAS	IL7R	MDM2	PAX7	RNF2	TGM7	CCND1	NFE2L2	NF2	
BCL2L2	CTNNA1	FH	ING4	MDM4	PAX8	RNF213	THBS1	CDK4	NRAS	NOTCH1	
BCL3	CTNNB1	FLCN	IRF4	MEN1	PBRM1	RPS6KA2	TIMP3	CDK6	NTRK1	NOTCH2	
BCL6	CYLD	FLI1	IRS2	MITE	PBX1	RRM1	TLR4	CSF1R	NTRK3	NPM1	_
BCL9	CY 2009		II GA10		F EADI	RUNX1		1 MZ			
BCR	C) 2D6	11 2/		AG		SAMDS				PIRS	
BIRC2	DA	N				🔤 🖸 S 🥪			PC3C		
BIRC3	DCC	FOXL2	ITGB3	MLLT10	PGAP3	SDHA	TNK2	ERBB3	PIK3CB	PTCH1	
BIRC5	DDB2	FOXO1	JAK1	MMP2	PHOX2B	SDHB	TOP1	ERBB4	PTPN11	PTEN	
BLM	DDIT3	FOXO3	JAK3	MN1	PIK3C2B	SDHC	TPR	ERCC2	RAF1	RADSO	
BLNK	DEK	FOXP1	JUN	MRE11A	PIK3CD	SOHD	TRIM24	ESR1	RET	RB1	
BMPR1A	DICER1	FOXP4	KAT6A	MTR	PIK3CG	SEPT9	TRIM33	EZH2	ROS1	RUNX1	
BRD3	DPYD	FZR1	KAT6B	MTRR	PIK3R2	SGK1	TRIP11	FGFR1	SF3B1	SETD2	
BTK	DST	G6PD	KDM5C	MUC1	PIM1	SH2D1A	TRRAP	FGFR2	SMO	SMARCA4	
BUB1B	EML4	GATA1	KDM6A	MUTYH	PKHD1	SMAD2	TSHR	FGFR3	SRC	SMARCB1	1
CARD11	EP300	GATA2	KEAP1	MYB	PLAG1	SMAD4	UBR5	FGFR4	ARID1A	STK11	1
CASC5	EP400	GATA3	KLF6	MYCL1	PLCG1	SMUG1	UGT1A1	FLT3	ASXL1	TET2	+
CCND2	EPHA3	GDNF	LAMP1	MYD88	PLEKHG5	SOCS1	USP9X	GNA11	ATM	TP53	+
CCNE1	EPHA7	GPR124	LCK	MYH11	PML	SOX11	VHL	GNAQ	ATR	TSC1	-

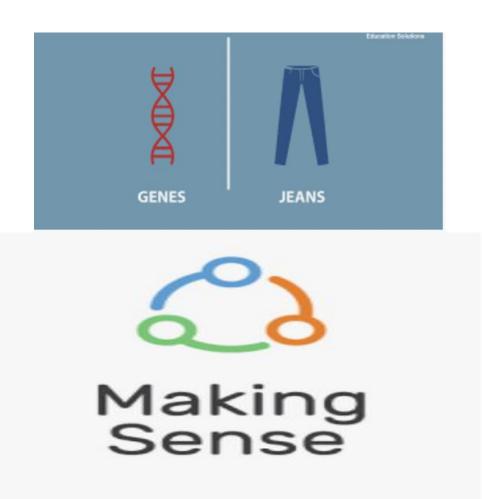

How to choose

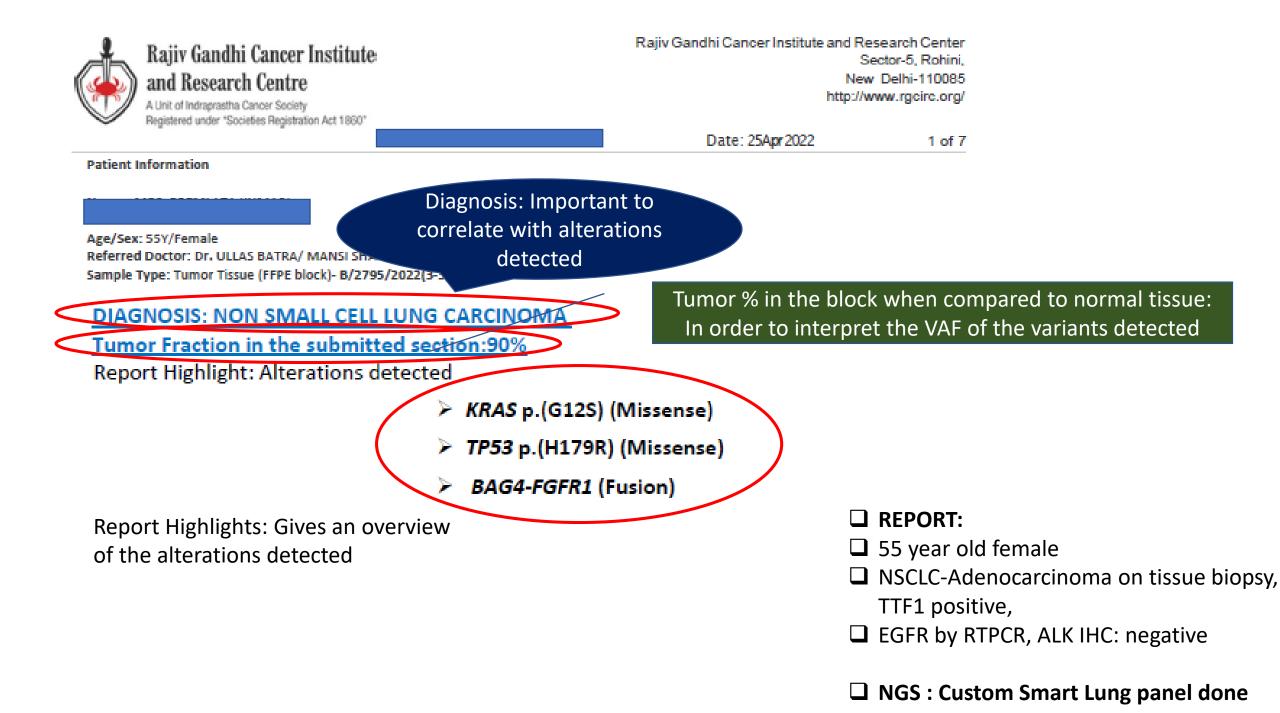
Small: looking for expected things

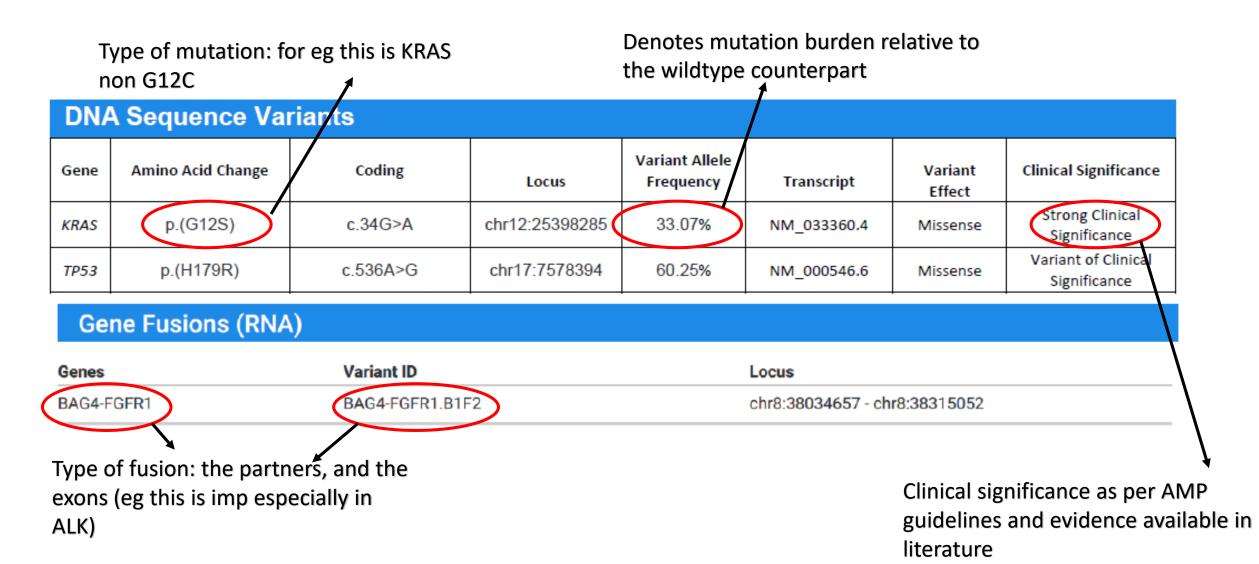

- Diagnostic use in tumors with known actionable biomarkers
- Cost constraints
- Tissue constraints
- Require faster results

Large: when you don't know what to look for

- Diagnostic use in tumors which are molecularly heterogeneous with not many actionable targets
- Tissue not an issue
- Results may not deter ongoing treatment line
- Cost also not an issue
- Research intent




Status of NGS reports/ companies offering NGS in India...



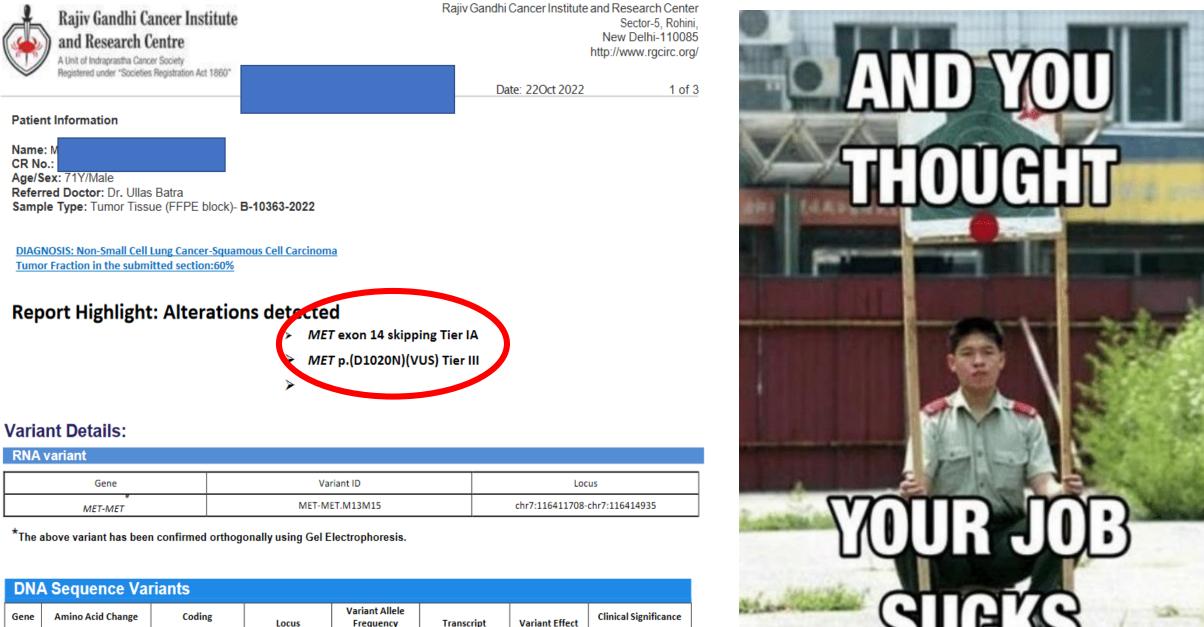
Lets discuss the common terminologies/ medical jargon used in the NGS report

- VAF
- Depth
- Coverage
- Cellularity
- DNA/RNA
- VUS....

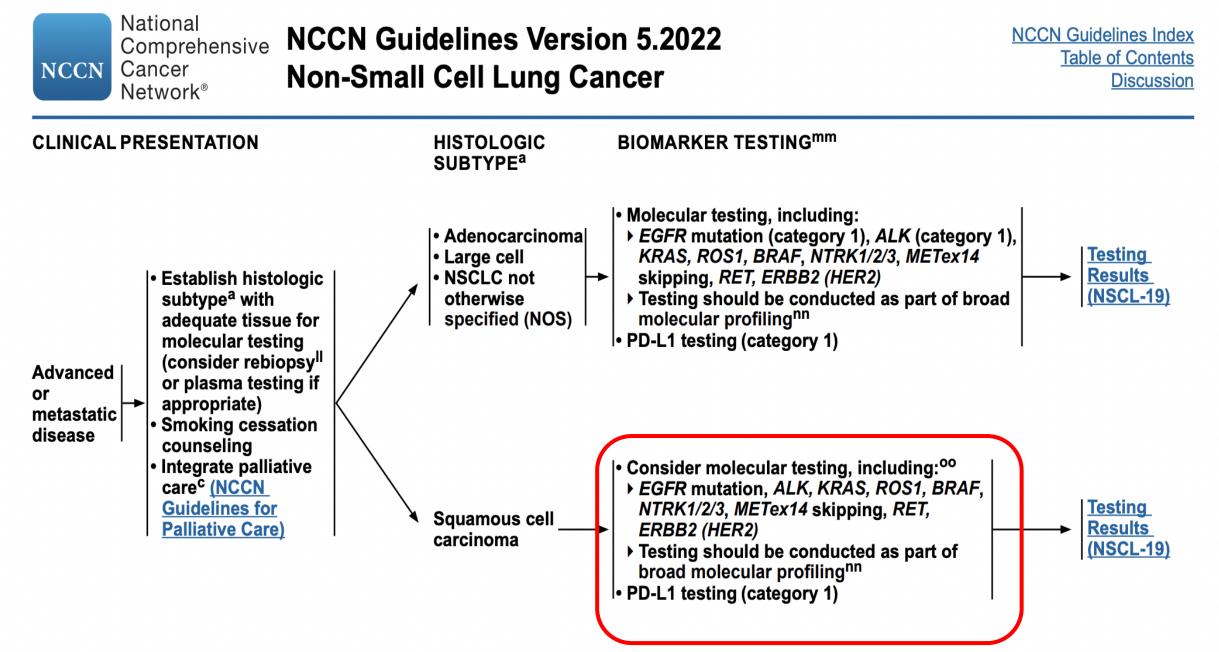
NGS SMART Lung Panel

NCI MATCH


Assay Information and Methodology Genes covered in the Test Description. - This customized panel is a multi-biomarker next generation sequencing assay that interrogates the under n panel: Imp to match the nucleotide Variants (SNVs) and Fusion Rearrangements as mentioned below. gene to the clinical context Genes Analyzed for SNVs AKT1, ALK, BRAF, EGFR, ERBB2, KRAS, KEAP1, MET, NRAS, NTRK1, PTEN, PIK3CA, RB1, ROS1, TP53, STK11. Genes Analyzed for Rearrangements - ABL1, AKT3, ALK, AXL, BRAF, EGFR, ERBB2, ERG, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, MET, NTRK1, NTRK2, NTRK3. PDGERA_PPARG, RAF1, RET, ROS1, SMO. Quality Metrics: PASSED - For the DNA based assay, the panel and the va Coverage for tissue somatic panel: min median Software using the following quality metrics (MEDQCOV greater than 1000, coverage of 500-1000x warranted RNA based assay greater than 5000 mapped reads were used as cutoffs. Sample Input and Analytical sensitivity - The assay utilizes a minimum of 20ng DNA and 20ng RNA at 500X coverage and provides an analytical sensitivity of more than equal to 5 percent for DNA based genetic alterations. Analytical sensitivity: 5%: lowest VAF Note:- This information in this report does not constitute a treatment recommendation of not to use and ny specific inerapeutic agent, and should not be interpreted as treatment advice. Decisions concerning patient care and treatment rest solely within the discretion of the patient's treating physician. Fusion QC: 5000 reads cut off as per


Case 1

- 65 year old male, smoker
- Diagnosed as stage IV NSCLC, sq cell ca, p40 positive, TTF 1 negative
- PDL1- 60%
- PET CT- lung mass with pl effusion with multiple skeletal metastases
- Options of treatment
 - Pembrolizumab and Chemotherapy- KN 407
 - Pembrolizumab alone- KN24/42
 - CM 9LA- Nivo Ipi + 2 x pacli carbo
 - Chemotherapy followed by 2nd line IO(on progression)-CM017
 - Any other


- Patient was started on KN 407 regimen
- PET CT after 4 cycles- partial response to treatment
- Continued on Pembrolizumab maintenance
- PET CT after 8 cycles- progressive disease with increase in effusion and new lymphadenopathy and bony lesions
- What to do now??

Gene	Amino Acid Change	Coding	Locus	Variant Allele Frequency	Transcript	Variant Effect	Clinical Significance
MET	p.?	c.3082+1G>A	chr7:116412044	8.79%	NM_001127500.3	Splice site	Oncogenic (Tier IA)
MET	p.(D1020N)	c.3058G>A	chr7:116412019	10.23%	NM_001127500.3	missense	Variant of Uncertain Significance (Tier III)

Printed by ullas batra on 11/16/2022 12:00:45 PM. For personal use only. Not approved for distribution. Copyright © 2022 National Comprehensive Cancer Network, Inc., All Rights Reserved.

The Indian data....

Case 2...

- 55 year old male
- Diagnosed as stage 4 NSCLC
- PET CT- Right lung mass with adrenal and bony mets
- ALK positive by IHC
- NGS- not done
- What is the role of variant detection in the front line management of ALK rearranged NSCLC?

The case continues....

- Started o Alectinib 600 mg bd
- Tolerability well
- PET CT- after 6 months- partial response to treatment
- PET CT –after 15 months- progressive disease in the form of new lung nodules and supraclavicular lymphadenopathy
- MRI Brain- normal
- What will you do now?
 - Change to Lorlatinib
 - Biopsy and NGS- "to get dramatic insights and personalized medicine"
 - Any other??

	۲	A Unit of Indrapra	stha Cancer Society *Societies Registration A	ct 1860"				Dá	ate: 23Apr 2022	http://www.rgcirc.org/	
	Patie	nt Information									
			r. Ullas Batra/Ma or Tissue (FFPE								
• Un			all Cell Lung Cance e submitted section								су
• Bio	Rep	ort Highl	ight: Alte	ratio	ns de tecte						
• NG						<i>L4-ALK</i> (Fusio (p.(lle1171As	-	ssense)			
	Varia	ant Details	5								
	Gene	Fusions (RNA)								
	Genes			Variant	ID			Locus			
	EML4-A	LK		EML4-A	LK.E6aA20.AB37436	1		chr2:4249	1871 - chr2:29446	394	
	DNA	Sequence	Variants			Variant Allele			1		
	Gene	Change	Coding		Locus	Frequency	Tra	nscript	Variant Effect	Clinical Significance	
	ALK	p.(lle1171Asn)	c.3512_3513delT	Cins AT	chr2:29445212	15.03%	NM_0	004304.5	Missense	Strong clinical significance	
	Clinical	Significance:									

The ALK gene encodes the ALK receptor tyrosine kinase (RTK) with sequence similarity to the insulin receptor subfamily of kinases. ALK is the target of recurrent alterations in cancer, the most common being chromosomal rearrangements that generate fusion genes containing the intact ALK tyrosine kinase domain combined with multiple partner genes. ALK fusion kinases are constitutively activated and drive oncogenic transformation via activation of downstream STAT3, PI3K/AKT/MTOR, and RAS/RAF/MEK/ERK pathways. About 5% of non-small cell lung cancer (NSCLC) cases generate recurrent ALK fusions with EML4, KIF5B, and HIP1[PMID: 20979469, 27386342, 23198868]

ALK (Ile1171Asn) mutation has been identified in ALK fusion positive NSCLC following disease progression on ALK inhibitor Alectinib. [Level of evidence: R2][www.oncokb.org]

Lets talk to dr google.....

Case Reports > Lung Cancer. 2015 May;88(2):231-4. doi: 10.1016/j.lungcan.2015.02.005. Epub 2015 Feb 12.

I1171 missense mutation (particularly I1171N) is a common resistance mutation in ALK-positive NSCLC patients who have progressive disease while on alectinib and is sensitive to ceritinib

Sai-Hong Ignatius Ou¹, Joel Greenbowe², Ziad U Khan³, Michele C Azada³, Jeffrey S Ross⁴, Phil J Stevens², Siraj M Ali², Vincent A Miller², Barbara Gitlitz⁵

Affiliations + expand

PMID: 25736571 DOI: 10.1016/j.lungcan.2015.02.005

The options of treatment now....

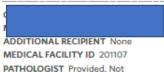
- Change over to ceretinib
- Change over to Lorlatinib
- Continue chemotherapy
- ABCP regimen
- Any other

Case 3

- 87 year old male
- Underwent surgery for CA Lung at the age of 82
- Received 4 cycles of chemo
- Now has recurrent disease
- PET CT- lung mass with bilateral lung nodules with bony lesions
- Biopsy- NSCLC NOS
- Sample sent for NGS

PATIENT Mehra, Subhash TUMOR TYPE Lung adenocarcinoma COUNTRY CODE IN REPORT DATE 22 Sep 2020 ORDERED TEST # ORD-0902067-01

The story con


• NGS report....

ABOUT THE TEST FoundationOne®CDx is a next-generation sequencing (NGS) based assay that identifies genomic findings within hundreds of cancer-related genes.

PATIENT

SEX Male MEDICAL RECORD # Not given

PHYSICIAN

SPECIMEN

SPECIMEN SITE Lung SPECIMEN ID S-3986/14 (H1948/14) E SPECIMEN TYPE Block DATE OF COLLECTION 27 February 2014 SPECIMEN RECEIVED 16 September 2020

Microsatellite status - MS-Stable

Tumor Mutational Burden - 3 Muts/Mb

BIOMARKER FINDINGS

GENOMIC FINDINGS

10 Trials see p. 10

BRAF - V600 K601>E

Sensitivity for the detection of copy number alterations is reduced due to sample quality.

Biomarker Findings

Microsatellite status - MS-Stable Tumor Mutational Burden - 3 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

BRAF V600_K601>E EED splice site 966+1G>T NFE2L2 W24R SETD2 E2477fs*10

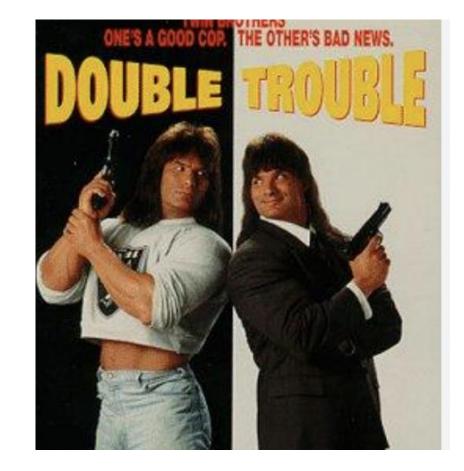
7 Disease relevant genes with no reportable alterations: ALK, EGFR, ERBB2, KRAS, MET, RET, ROS1

6 Therapies with Clinical Benefit

10 Clinical Trials

O Therapies with Lack of Response

ACTIONABILITY


No therapies or clinical trials. see Biomarker Findings section

No therapies or clinical trials. see Biomarker Findings section

	THERAPIES WITH CLINICAL BENEFIT (IN PATIENT'S TI IMOP TYPE)			
Trametinib	Trametinib			
		Cobimetinib		
	Sorafenib			

Case scenario 4

- 45 year old female
- Stage 4 NSCLC
- Bx- adenocarcinoma
- Sent for single gene testing- EGFR mutant, ALK positive by IHC
- Confirmed By NGS
- What now?
 - Start with EGFR TKIs
 - Start with ALK TKIs
 - Concurrent EGFR and ALK TKI
 - Chemotherapy
 - Kuch aur!!!!

Lung cancer with dual *EGFR* and *ALK* driver alterations at baseline: a retrospective observational cohort study

Vanita Noronha, Anuradha Chougule, Pratik Chandrani, Rajiv Kumar Kaushal, Vijay Maruti Patil, Nandini Menon, Akhil Kapoor, Sunil Chopade, Ajaykumar Singh, Omshree Shetty, Amit Dutt, Shripad Banavali & Kumar Prabhash

In conclusion, the dominant driver in NSCLC with dual *EGFR/ALK* alterations is *ALK*; targeting both molecular drivers concurrently is an attractive therapeutic option.

Case scenario....

MICROSCOPIC EXAMINATION: 001. FNAC & FNAB : 4R :

SMEARS & CELL BLOCK : POSITIVE FOR MALIGNANT CELLS

METASTATIC POORLY DIFFERENTIATED CARCINOMA

nild pl

002. FNAC & FNAB : 11L :

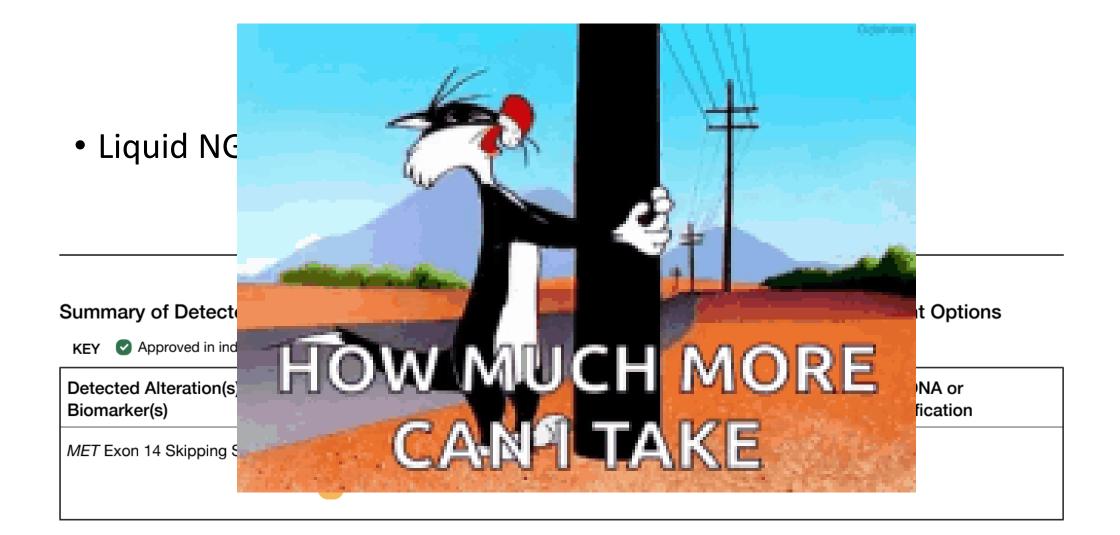
SMEARS SHOW OCCASIONAL ATYPICAL CELL CLUSTER ALONG WITH FEW LYMPHOID CELLS AND BRONCHIAL EPITHELIAL CELLS IN A HEMORRHAGIC BACKGROUND.

CELL BLOCK - METASTATIC POORLY DIFFERENTIATED CARCINOMA

ADVICE : IHC FOR FURTHER CHARACTERIZATION

IHC reports....

```
ON IHC, TUMOR CELLS ARE POSITIVE FOR CK (HETEROGENOUS PATTERN), TTF1,
 CD56(FOCAL) WHILE ARE NEGATIVE FOR P40, SYNAPTOPHYSIN, CHROMOGRANIN
 & INSM1.
 P53 IS STRONG AND DIFFUSE- MUTANT TYPE P53.
 P16 IS POSITIVE (SHOWS STRONG AND DIFFUSE EXPRESSION) .
 .
 Ki67 ~ 55-60%.
OPINION: METASTATIC POORLY DIFFERENTIATED CARCINOMA,
          FAVOUR SMALL CELL CARCINOMA.
ADVICE: S.CHROMOGRANIN/ PRO GRP LEVELS.
```


The case continues...

- Since the pt was non smoker, EGFR by Cobas was sent on Blood- del 19 mutant
- Tissue insuff for further molecular testing
- Repeat bx- insufficient tissue
- What to do now??

Clinical History

- 67 year old male
- Ex smoker
- NSCLC-Adenocarcinoma
- Tissue: single gene assay: negative
- Tissue inadequate for NGS.
- Liquid NGS done: no actionable mutation
- Given Pembro pem carb
- PD after 6 cycles
- Started on weekly paclitaxel
- Sent a Liquid biopsy- against wishes of treating unit

The case continues....

- Patient was started on capmatinib
- Responded well
- After 10 months, had disease PD
- NGS- liquid bx sent
- Change over to type 2 met inhibitc ^{Summary}

b	REPORTING Report Date: Receipt Date: Collection Date: Specimen: Status:	NOV-07-2022 OCT-28-2022 OCT-26-2022 Blood FINAL	PHYSICIAN Ullas Batra Account: M/S Medleader Laboratories PVT. LTD. Address: 57/42, First FI, Panchayat Main Rd, Seevaram Perungudi, Chennai, 600096, India Ph: 919655290919 Fax: N/A Additional Recipient: N/A	
				Complete Tumor Response Map on page 2

- C Summary of Detected Somatic Alterations, Immunotherapy Biomarkers & Associated Treatment Options
 - KEY 🔮 Approved in indication 🛛 😂 Approved in other indication 🛛 🛞 Lack of response

Detected Alteration(s) / Biomarker(s)	Associated FDA-approved therapies	Clinical trial availability (see page 3)	% cfDNA or Amplification
<i>MET</i> D1228H	X Crizotinib, Savolitinib	Yes	0.2%
MET Exon 14 Skipping SNV	Capmatinib, Tepotinib	Yes	2.3%

KEEP LEARNING AND THANKS for not sleeping

